
SECTION 1
INTRODUCTION

If we were to examine the amplitude versus time
history of a process variable such as pressure,
temperature, flow or force, we would in all
likelihood observe variations in amplitude over
time (Figure 1).  If our objective is to measure this
time-varying phenomenon with a digital sampled
data acquisition system, then there is one central
issue, which must be addressed.  Since information
is lost when a continuum is represented with a
finite number of samples, the central issue relates

a.  Time History of Process Variable

to how many discrete samples must be acquired. 
Alternatively, what is the required sampling rate?
Our intent with this document is to answer the
question of “How fast must I sample?”  To answer
this requires first that we quantify the band of
frequencies that we are interested in (i.e., establish
the desired bandwidth).  Once bandwidth has been
quantified, sampling rate can be established based
on the desired bandwidth and on the highest
frequency beyond which there is no detectable
energy.  In Section 2 we present bandwidth as the
basis for establishing the sampling rate parameters.
 Section 3 discusses the relationship between
sampling rate and anti-alias filter characteristics
and presents a method to compute sampling rate
based upon the specific application.  Finally,
Section 4 introduces processing sampled data
using digital filtering.
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SECTION 2
ESTABLISHING BANDWIDTH

We hypothesize that if we decompose the time
varying input signal into its frequency contents
(i.e., represent the signal with sinusoidals using
Fourier Transforms), we would observe that the
complex signal consists of one or more discrete
frequencies.  Some of these may be attributable to
either the process dynamics or to noise.  If they are
noise, our objective will be to discriminate against
them (i.e., filter or remove them from the
frequencies of interest) such that they do not affect
the individual samples.  Generally speaking, noise
is considered to be of higher frequency than the
process dynamics thus enabling us to use a low-
pass filter to pass the lower frequencies of interest
and attenuate the higher noise frequencies.

The lower frequencies attributable to the process
dynamics may or may not be of interest depending
upon the measurement objectives.  For example, if
we are interested in the average behavior of a
process, we need only take enough samples to
average out the variations.  However, since there
may be multiple low frequencies, establishing the
true average for any time interval is complicated. 
Alternatively, we can use a hardware implemented
low-pass filter with a cutoff frequency near zero. 
This, however, will make the system overly
sluggish and may compromise overall measurement
accuracy as well as compromise out-of-limit
detection schemes.  For example, a 1 Hertz filter
has a 1-second time constant.  If a step input is
applied the filter’s output will respond

exponentially and will require several time
constants before reaching final value.

Oftentimes the low frequency variations are of
interest and the objective is to preserve both the
frequency and amplitude of these.  Consider for
example an engine-dynamometer test stand with
observed low frequency variations in the torque
measurement.  Are the variations in torque caused
by non-uniform fuel burning, non-uniform fuel
delivery or some other facet of the engine’s
performance, or are these perhaps due to the
torque measurement process itself?  If we rely
upon time averages, the variations may go
unnoticed.

Establishing the band of frequencies of interest is
the basis for establishing all sampling parameters
including filter characteristics, sampling rates and
post sampler operations such as digital filtering. 
Accordingly, bandwidth must be established based
on measurement objectives, knowledge of the
process dynamics and knowledge of the various
measurement techniques and their response
characteristics.  If the measurement objectives
include establishing correlation between different
measured variables, performing closed-loop
process control, analyzing the time amplitude
variations or detecting out-of-limit conditions, then
simple averaging should not be used.  Instead, care
must be taken not to distort the amplitude-
frequency characteristics within the band of
interest.



SECTION 3
ESTABLISHING SAMPLING RATE

Consider the input function (Figure 2a).  As
shown, the function varies with time.  The
equivalent frequency domain representation of this
is shown in Figure 2b.  Here it is shown that the
function has energy at different frequencies
extending up to fx.  Beyond fx no energy is present.
 Based on an analysis of the process dynamics and
in consideration of the measurement objectives, the
frequency band of interest has been predetermined
to lie from zero to fc.  Frequencies beyond fc are
considered unwanted.  The measurement objective
is to represent the input function f (t) with a finite
set of samples which are adequate to preserve
both the frequency and amplitude information
between zero and fc.

Ideally, we would like to process the input
function through a hardware implemented low-pass
filter which passed all frequencies between 0 and fc

without attenuation and had infinite attenuation for
all frequencies greater than fc (Figure 3a). 

Figure 2.  Time and Frequency Domain Representations
              of Input Function

Practically speaking, the low-pass filter will
attenuate all frequencies past the filter’s cutoff
frequency (here the filter’s cutoff is selected to be
fc) at a finite rate depending upon the filter’s
attenuation characteristics.  Figure 3b illustrates
the attenuation characteristics for several different
filters.

Since attenuation is stated in terms of
dB/Octave, we can calculate the frequency fc

*

corresponding to any desired attenuation level as
follows:

No. Of Octaves, N = (Desired Attenuation, dB) / (Filter
Rolloff, dB)

For example, if we are using a digital data
acquisition system, which uses an m-bit analog-to-
digital converter, then we cannot distinguish any
energy, which is less than the converter’s
resolution.  We can use this as a measure of
desired attenuation level. 

 
Figure 3.  Attenuation Characteristics for Low-Pass Filters

b.  Equivalent Frequency Domain Representation
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That is,

 Desired Attenuation Level, dB = 20log(2m)

Using N computed above, the frequency fc
*

beyond which there is no detectable energy can be
computed as: 

fc
* = 2Nfc

From this it can be seen that the practical filter
more closely approximates the ideal filter for
values of N that are small.  That is, the greater the
attenuation rate, the closer fc

* will be to fc.
The principal criterion to use in selecting the

sampling rate fs is to ensure that the band of
frequencies from zero to fc is not distorted as a
consequence of sampling.  That is, no higher
frequencies are aliased into this fundamental
interval.  However, since we are not concerned
about frequencies between fc and fc

*, we can select
an fs such that distortion occurs in this interval.

To compute sampling rate fs, we first calculate
the folding frequency, fn, which is the midpoint
between fc and fc*.  Thus

fn = ½(fc + fc*)

To ensure the integrity of the fundamental interval,
the sampling frequency, fs, must be at least twice fn.
 That is,

fs �  2fn

Figure 4 illustrates the relationship between fc, fn,
fc

* and fs.  As shown, the fundamental interval, zero
to fc, remains as it was prior to sampling and thus
has not been distorted.  However, distortion is
present beyond fc.

The infinite sidelobes that result from sampling
can be viewed in terms of a Frequency Folding
Diagram (Figure 5).  Because of the non-
uniqueness of equally spaced sampled data, any
energy we observe in the fundamental interval of
zero to fc can be the result of energy at that
frequency or can be the result of a higher
frequency that is aliased down to the fundamental
interval. 

Figure 4.  Frequency Relationships

Note that if there is energy at fs or any integer
multiple of fs that it will alias to zero frequency. 
To ensure that the fundamental interval is not
distorted, we must ensure that there is no
detectable energy beyond f = fs - fc.  A review of
Figure 4 will verify that this frequency is fc

*.  Since
we have chosen fs based on fc

*, we are sure that
there is no distortion in the fundamental interval.

EXAMPLE 1
It is desired to measure a process variable which
has a bandwidth of 10Hz (fc = 10) using a system
with a two-pole (i.e., 12dB/Octave) filter with
cutoff frequency equal to 10Hz.  Calculate the
required sampling rate fs such that the maximum
possible distortion introduced by aliasing is 1%.

Figure 5.  Frequency Folding Diagram
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Calculate the frequency fc
* beyond which all

energy is diminished by the distortion
specification.

• Number of octaves, N:

N = (Desired Attenuation, dB) / (Filter Rolloff
Rate, dB/Octave)

where Desired Attenuation is 1%.  Expressing this
in dB:

dB = 20 log (0.01) = -40

Thus
N = (-40dB) / (-12dB/Octave) = 3.3

• The frequency, fc
*, corresponding to this

attenuation is:
fc

* = 2Nfc = 100.8Hz

• The folding frequency, fn, is:
fn = ½ (fc + fc

*) = 55.4Hz

• The sampling frequency, fs , is:
fs ≥ 2fn ≥ 110.8Hz

Graphical Interpretation

The sketches above illustrate that 10Hz can
contain 1% distortion.  However, for this to occur
there must be energy at f = 100.8Hz which aliases
to f = 10Hz.

EXAMPLE 2
For the above example, calculate the required
sampling rate if a four-pole filter (24dB/Octave) is
used rather than a two-pole filter.

Solution

• Number of Octaves, N:

N = (-40dB) / (-24dB/Octave) = 1.6

• fc
* = 2Nfc = 31.7Hz

• Folding frequency, fn :

fn = ½ (fc + fc
*) = 20.9Hz

• Sampling frequency, fs :

fs ≥ 2fn ≥ 41.8Hz

Similarly, if we had used a six-pole filter
(36dB/Octave), the required sampling rate would
be 31.6Hz.

b.  Equivalent Frequency Folding Diagram
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SECTION 4.0
PROCESSING SAMPLED DATA

Although we have taken care in choosing fs

such that no distortion has been introduced in the
fundamental interval, any energy that lies between
fc and fn in the original spectrum will still be
present in the sampled results.  Because of the pre-
sampler filter (often termed anti-alias filter), this
energy will be diminished in amplitude according
to its relative position to the filter cutoff frequency
fc and the filter’s attenuation characteristics.  Thus,
the attenuation at a frequency fx which lies between
fc and fn can be computed as:

Attenuation at fx, dB = 
(Rolloff characteristics) [log (fx /fc)]/log(2)]

where the Rolloff Characteristics are the filter’s
attenuation expressed in terms of dB/Octave.

Since the sampled data will contain energy at
unwanted frequencies, it is necessary that the
discrete samples be further processed through
some type of digital filter.  If we simply average
the sampled data over some time interval qT, then
there are three consequences we must consider. 
These are:

1.  The effective bandwidth will be reduced
     to BW =  1/ 2∆T

2.  Any energy present from fc to fn may
introduce an error in the average.

3.  Any energy present which has an integer
     number of periods equal to ∆T will be  
      effectively eliminated.

To illustrate digital filtering, two simple concepts
are presented below.

4.1 Running Averages with Equally Weighted
Samples

If we process the sampled data through a
running average filter where all samples are
equally weighted, the net effect is a low-pass
filter which passes zero frequency and

Figure 6.  Transfer Function for Equally            
                  Weighted Running Averages

provides attenuation at all frequencies from
zero to the folding frequency (fn = fs/2). 
The transfer function for this filter which
uses n equally weighted samples is:

H(α) = Sin (nω/2)/nSin (ω/2)

where ω = 2π (fx/fs).  Figure 6 illustrates
the transfer function for n = 5 and n = 9.  It
should be noted that the band of
frequencies we are interested in is less than
fn.  Ideally, we would like to design the
digital filter such that the band of
frequencies from zero to fc is unattenuated
and all frequencies greater than fc are
eliminated.  Here again, this is the ideal
case and a compromise must be made.

EXAMPLE 3

For Example 1 above using a two-pole filter
with f = 10Hz, assume that the sampling
frequency has been set at 110Hz (i.e., 110
samples per second per channel).  As shown in
the Example 1 sketches, any individual sample
may contain energy caused by frequencies
which lie anywhere from zero to fn.  However,
since we are only interested in frequencies
between zero and fc, it is desirable to reduce
any effects attributable to frequencies greater
than fc.  For this case, process the data every
100mS through an 11-point equally weighted
filter to produce a smoothed output each
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100mS.  Calculate the digital filter attenuation
over the range of zero to 50 Hertz.

Solution

The transfer function for the 11-point average with
equally weighted samples is:

H(f) = Sin (nω/2)/nSin (ω/2)

where ω = 2π fx / fs     with fs = 110 and n = 11.

The response characteristics over the range are
shown in the sketch below.

4.2 Running Averages with Unequal
Weighted Samples

Using Least-Squares Quadratics as a filter
design criterion, a low-pass filter similar to the
above filter which uses equally weighted
samples can be designed.  As with the equally
weighted samples filter, this filter also uses a
running average.  The samples, however, are

11-Point Equally Weighted Sample, fs = 110 Hz

weighted unequally.  The transfer function for
the five-point running average is:

H(ω) = (17 + 24Cosω -6Cos2ω)/35
     

with ω = 2π(fx/fs).  The coefficients (i.e.,
weights) are:

Yn = 1  [-3xn-2 + 12xn-1 +17xn =12xn+1 -3xn+2]
        35

Figure 7 illustrates the transfer function.  Note
the higher degree of tangency at zero
frequency as compared to Figure 6.  There are
other filter designs which extend this tangency
even further.

The transfer function for the 11-point
unequally weighted digital filter is:

H(ωω) = 89 + 168Cos(ωω) + 138Cos(2ωω) +                     
             88Cos(3ωω) + 18Cos(4ωω) -72Cos(5ωω)/429

Figure 7.  Transfer Function for Unequally               
                  Weighted Averages
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SECTION 5.0
SUMMARY

Since information is lost when a continuum is
represented by a finite number of samples, it is
important that our samples be closely spaced.  The
space between samples (i.e., the value of the input
function) can be approximated using any of various
interpolating polynomials.  By and large, this is the
principal criterion we use in choosing sampling rate
and various rules-of-thumb are offered based on
this.  Unfortunately, there is another aspect of
selecting sampling rate which oftentimes is
neglected.
Because of the non-uniqueness between equally
spaced sampled data and the sampled function, the
aliasing phenomenon may significantly distort our
interpretation of the sampled results.  As a
consequence, it is critical that we select sampling
rate based on the frequency beyond which there is
no detectable energy.  Since we are oftentimes
unsure of this frequency, we must process the

signal to be sampled through a low-pass hardware
filter such that we can accurately control the
bandwidth of the signal prior to sampling.  Thus,
rules-of-thumb regarding sampling are meaningless
unless they specifically state the anti-alias filter’s
rolloff characteristics.

The techniques presented in Section 2 provides a
mechanism for computing sampling rate based on
desired bandwidth and filter characteristics.  Using
this, the tradeoff between different filters can be
easily quantified.  While systems that offer four and
six-pole filters are initially more expensive than
those with one or two-pole filters, they provide
advantages which must be considered in assessing
total costs.  Improved filtering reduces sampling
rate which relaxes aggregate throughput
requirements, processor I/O bandwidth
requirements, storage requirements and relaxes
application software requirements.
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